Customer Power, Strategic Investment, and the Failure of Leading Firms.

Clayton M. Christensen & Joseph L. Bower
Strategic Management Journal 17, No. 3 (March 1996)

Presenter:
Lyn Shen (D04741004)
Graduate Institute of Business Administration
College of Management National Taiwan University

2016/3/16
Outline

1. The Introduction
 • The Author
 • The definition of terms
 • The Background
 • The Questions
 • The Literature review

2. The Methods and Data

3. The Results
 • Sustaining vs. Disruptive innovation
 • The impact on industry structure
 • The leaders in innovations
 • 6 steps to allocate the resources
 • 3 cases of disruptive innovation

Part 1

Part 2

4. The Conclusions

5. The Discussion
 • The Debates
 • From theories
 • From practices
 • The improvement of theory
 • The Cases
 • Uber
 • Airbnb
 • Netflix
 • Tesla
 • The Conclusions
The Author - Clayton M. Christensen

1977
- Technologies Attraction: The Dangers of too Much Technology
- Exploring the Limits of the Technology S-curve, Part 1: Component Technologies. / Part 2: Architectural
 → There are multiple S-Curves, must be focused on switch point.

1992
 → Observing the trend of the development of disk industry.

1993
- Technological Discontinuities, Organizational Capabilities, and Strategic Commitments.
 → The advantage of entrants is the new value networks from economics and organization theory.

1994
- Explaining the Attacker's Advantage: Technological Paradigms, Organizational Dynamics, and the Value Network.
 → Value network is key to disruptive innovation.

1995
- Customer Power, Strategic Investment, and the Failure of Leading Firms
 → This paper.

1996
- Born on 1952 (age 63)
- Professor of HBS
- Oxford University (M.Phil.) in 1977
- Harvard University (MBA in 1979, DBA in 1992)
The Author - Joseph L. Bower

Introduction

- Born on 1938 (age 77)
- Professor of HBS
- BA / MBA / DBA Harvard University
- An expert on corporate strategy, organization, and leadership.

Examine how strategy is made by company managers across several levels of an organization. (2006)

In Capitalism at Risk, how can capitalism be sustained? The authors critic turn to government. (2011)
The definition of terms

• **Innovation**: a change in technology

• **Technology**: the processes by which an organization transforms resources (labor, capital, materials, and information…) into products or services.

 i.e., Extend beyond the engineering and manufacturing functions of the firm, encompassing a range of business processes.

All firms have technologies.
The Background

- **Mainframe**: IBM
- **Minicomputer**: Digital Equipment, Data
- **Desktop Computer**: Apple, Commodore, Tandy, IBM (later)
- **Portable computer**: Compaq, Zenith, Toshiba, Sharp

Why many leading firms failed to develop simpler technologies that initially were only useful in emerging market?
The Background

Because they lacked the skills? No. Actually they were excellent in skills.

e.g.,
IBM: multi-chip IC package/CISC
Sun Microsystems: RISC microprocessor technology

But why they were later shaken by shifting technologies and markets?
The Research Questions

Q: While facing the technology revolution, why many leading firms failed?

A: Wrong + Wrong = Customer Power, Strategic Investment, and the Failure of Leading Firms.

- Listen too carefully to the current customers. (not the potential)
- The value networks support sustaining innovations. (not the disruptive)
- The leaders Failed & The entrants succeeded.

The reasons: (1) managerial myopia. (2) organizational lethargy. (3) insufficient resources or expertise.
The Literature Review

How the resource allocation impact the innovation? Linking two historically independent stream of research:

1. Resource Dependence

Improving the conventional technologies used by their current customers which provided the resources the firms needed to survive over the short term. (Cooper & Schendel, 1976; Resource Dependence; Foster, 1986)

2. Resource Allocation

The middle level managers tended to support the product was assured for reducing the risks. (Bower, 1970; Burgelman, 1983 & 1984)

Whether the disruptive innovation will happen, is not depend on the manager’s power, but the current customers’ demand.
The Methods and Data

1. Content Analysis

- The disk database of product and performance
- The Company strategy and success or failure

2. In-depth interview

- Over 70 personal, unstructured interviews. The firms account for over 80% of the disk drives.

Q: Why Hard disk industry?
A: Rapid change in technology and market structure.
The Results (Part 1)
Sustaining vs. Disruptive innovation
1. Sustaining innovation

- Including the **component** and **architectural innovation**.
- Established trajectory of performance improvement.
The Results — Sustaining vs. Disruptive innovation

2. Disruptive innovation

Table 1. The disruptive impact on performance improvement of the 5.25-inch, vs. the 8-inch architecture

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Minicomputer</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8-inch drives</td>
<td>5.25-inch drives</td>
</tr>
<tr>
<td>Capacity (megabytes)</td>
<td>60 ✓</td>
<td>10</td>
</tr>
<tr>
<td>Volume (cubic inches)</td>
<td>566</td>
<td>150 ✓</td>
</tr>
<tr>
<td>Weight (pounds)</td>
<td>21</td>
<td>6 ✓</td>
</tr>
<tr>
<td>Access time (ms)</td>
<td>30 ✓</td>
<td>160</td>
</tr>
<tr>
<td>Cost per megabyte</td>
<td>$50 ✓</td>
<td>$200</td>
</tr>
<tr>
<td>Total unit cost</td>
<td>$3000</td>
<td>$2000 ✓</td>
</tr>
</tbody>
</table>

Key: Attributes valued highly in the minicomputer market in 1981 are presented in **boldface**. Attributes valued in the emerging desktop computing market in 1981 are shown in *italics.*

- Be valued in remote or emerging markets.
- 5.25-inch drives is smaller, lighter weight and cheaper, suiting PC market segment.
- Not just in drives, but across a range of industries.
The Results — Sustaining vs. Disruptive innovation

<table>
<thead>
<tr>
<th>Feature</th>
<th>Innovation type</th>
<th>Sustaining</th>
<th>Disruptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td></td>
<td>Improve the current products</td>
<td>Low-End or New market</td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td>current customers</td>
<td>potential customers</td>
</tr>
<tr>
<td>Value networks</td>
<td></td>
<td>Current</td>
<td>New</td>
</tr>
<tr>
<td>Mode</td>
<td></td>
<td>Evolutionary</td>
<td>Revolutionary</td>
</tr>
<tr>
<td>Market size</td>
<td></td>
<td>Big → Small</td>
<td>Small → Big</td>
</tr>
</tbody>
</table>
The Results —

The impact on industry structure

Patterns of Entry and Improvement in Disruptive Disk Drive Technologies
1956, IBM 305 RAMAC
5Mb

1974, IBM 3340 (Winchester)
35 or 70Mb, 14-inch

The history of Hard Drive https://www.youtube.com/watch?v=K4sZKXjkwno
The Results —

The impact on industry structure

Patterns of Entry and Improvement in Disruptive Disk Drive Technologies

Innovate or Perish
The Results –
The impact on industry structure

- PERFORMANCE CUSTOMERS WILL PAY FOR
- Incumbent’s sustaining trajectory
- Entrant’s disruptive trajectory
- High end of the market
- MOST PROFITABLE
- Mainstream
- Low end of the market
- LEAST PROFITABLE

SOURCE: CLAYTON M. CHRISTENSEN, MICHAEL RAYNOR, AND RORY MCDONALD
FROM “WHAT IS DISRUPTIVE INNOVATION?” DECEMBER 2015
The Results (Part 2)
The process of allocate
the resources
The Results — The leaders in sustaining & disruptive innovations

(a) Numbers of established and entrant firms introducing models employing selected trajectory-sustaining technologies

<table>
<thead>
<tr>
<th>Thin-film heads</th>
<th>Entrants</th>
<th>Established</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1975</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1976</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1977</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1978</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>1979</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>1980</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

(b) Numbers of established and entrant firms introducing models based upon disruptive architectural technologies

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin-film heads</td>
<td></td>
</tr>
<tr>
<td>Entrants</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Established</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Thin-film heads</td>
<td></td>
</tr>
<tr>
<td>Established</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Those established drive makers average 2 years lag.
The Results — 6 steps to allocate the resource

Table 3. Support of key elements of model found in each of six in-depth case studies

<table>
<thead>
<tr>
<th>Companies Studied:</th>
<th>prototypes of disruptive architecture drive developed internally, well before widespread industry adoption (model step 1)</th>
<th>marketers show early prototypes to lead customers of prior architecture; they reject product; marketing issues pessimistic forecast (model step 2)</th>
<th>project to commercialize disruptive product is shelved; company aggressively pursues sustaining innovations (model step 3)</th>
<th>new firms are established to commercialize disruptive architecture; they find new markets, where product’s attributes are valued (model step 4)</th>
<th>entrant firms which initially sold product only in new market improve performance faster than initial market requires, enabling them to attack established markets (model step 5)</th>
<th>In response to entrants’ attack, established firms belatedly introduce disruptive product. Sales are largely to existing customers, cannibalizing sales of prior architecture products. (model step 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Corp.</td>
<td>L</td>
<td>L</td>
<td>L, T</td>
<td>L, T</td>
<td>L</td>
<td>L, T</td>
</tr>
<tr>
<td>Conner Peripherals</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Miniscribe</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Seagate Technology</td>
<td>L</td>
<td>L</td>
<td>L, T</td>
<td>L, T</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Micropolis</td>
<td>T</td>
<td>L, T</td>
<td>L, T</td>
<td>L, T</td>
<td>L, T</td>
<td>L, T</td>
</tr>
<tr>
<td>Control Data</td>
<td>L</td>
<td>L</td>
<td>L, T</td>
<td>L, T</td>
<td>L, T</td>
<td>L, T</td>
</tr>
</tbody>
</table>

Step 1. Seagate: Engineers made over 80 prototype models before managers’ requirement.
Control Data: Designing 8-inch drives 2 years before others.

Step 2. Seagate’s main customer, IBM rejected Seagate’s 3.5-inch prototypes for insufficient capacity.

Step 3. In 1987, the market of 3.5” disk is US$50 million, but 5.25” is 0.5 billion. Seagate kept sustaining innovation.

Step 4. The frustrated engineers in Seagate and Miniscribe (5.5”) found Conner Peripherals Inc. (3.5”)

Step 5. Conner(3.5) invaded Seagate’s(5.5”) Market

Step 6. Many established firms eventually withdrew for the market.
The Results — 3 cases of established firms develop disruptive innovation

1. An Independent organization

Control Data Corporation (CDC)
- In 1975 to 1982, the worldwide leader in 14 inch disk drive technology in the OEM marketplace.
- Developing its 5.25-inch disk in Oklahoma City. Developing its 3.5-inch disk in California. (1987)

Quantum Corporation
- The leading firm of 8-inch disk.
- In 1984, Quantum built up Plus Development Corporation to develop 3.5-inch disk, and retained 80% ownership

2. The Mainstream organization

Micropolis
- The main products is 8-inch disk.
- In 1982, Micropolis started the disruptive innovation of 5.25-inch disk within the mainstream organization.
- CEO thought it was the most exhausting of his life. (Asymmetric motivation)
The Conclusions

• Describe the innovator’s dilemma.
• Distinguish between sustaining and disruptive innovation.
• The key issue appears to be firms’ disabilities in changing strategy, not technology.
• To link two theories (resource dependence and resource allocation), and point the process through which the demands of the current customers shape the allocation of resources in innovation.
• Despite the powerful forces of resource dependence, managers can change strategy successfully especially in organizations independent from the mainstream groups.
• By understanding the processes that link customer needs, impetus, and resource allocation, managers can align efforts to commercialize disruptive technology (which entails a change in strategy) with the forces of resource dependence.
Learning

Disruptive innovation

The core competence

Different Value work

The Dominant Design

Sustaining innovation
The Discussion

• The Debates
• The improvement of theory
• The Cases
• The Conclusions
Disruption is a theory of change founded on panic, anxiety, and shaky evidence. Christensen of poor scholarship (handpicking case studies that conform to his theory); misreading history (some companies he casts as doomed continued to perform well); and myopia (missing, the role unions played in the collapse of U.S. Steel).

We surveyed 77 proposed examples of disruption identified by Christensen. Only seven of the cases (9%) exhibited all four elements of the theory.

The case studies were handpicked to prove the concept. E.g. Seagate Technology developed 3.5” in 1988 (4 years later than others) but still succeeded within 2 years.

The most important thing of disruption innovation theory is the process, not the result.

Many companies with disruptive innovation failed in the final. (Micropolis, Morrison-Knudsen, Pathfinder, TD Bank…)

Not all innovation will succeed. We can’t criticize the whole theory with the result of a certain event. There is no permanent successful company in the world.

* Christensen and Lepore did not face-to-face debate. I summarize their viewpoints in their article and interview.
Source: Responds to New Yorker Takedown of 'Disruptive Innovation', Bloomberg Businessweek, June 22, 2014
In 2007, Christensen predicted Apple won’t succeed with the iPhone, but actually it was successful.

I didn’t quite get the iPhone right, because I missed the trajectory that Apple was on. But it made the theory more complete. To define who is the object of destruction. iPhone is disrupting the notebook, but it’s a sustaining innovation against Nokia.

The Disruptive Growth Fund launched by Christensen failed in one year with 64% loss.

I had nothing to do with the fund invested.

Christensen insisted on his view point. He has only to answer a small part of the questions. It seems that he doesn't want to argue with Lepore in the theory.
How Useful Is the Theory of Disruptive Innovation? (not well)
The Venn diagram maps the 77 examples listed in The Innovator's Dilemma and The Innovator's solution and shows the extent to which, in the opinion of industry experts, they exhibit each of four key elements of the theory. Using the industry experts' assessments, only seven of the cases (9%) exhibited all four elements of the theory.
The improvement of theory

Discussion

Better product to an established market

Address over-served customers with a lower cost business model

Compete against non-consumption

The Innovator's Solution: Creating and Sustaining Successful Growth. 2003
The improvement of theory

The economic engine

Market-creating innovations

Sustaining innovations

Jobs
Creates
Limited
Efficiency

Capital
Uses
Limited
Eliminates

Derivatives (Betting)

Efficiency
Innovations

Photo Source: Common Wealth Magazine
The improvement of theory

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Sustaining Innovation</th>
<th>Efficiency Innovation</th>
<th>Market-creating Innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone business example</td>
<td>Replace old products with new and better models</td>
<td>Sell mature, established products or services to the same customers at lower prices</td>
<td>Transform complicated or costly products so radically that they create a new class of consumers or a new market</td>
</tr>
</tbody>
</table>

| Phone business example | The Nokia N95 phone offered superior features compared to the Nokia 6300 phone | The Samsung C3322 handset was a low-cost competitor to the Nokia 6300 | The iPhone App Store connected developers and users creating a new market for mobile computers |

The Capitalist's Dilemma, 2014
Christensen’s answer

<table>
<thead>
<tr>
<th>Disruptive innovation</th>
<th>Customer</th>
<th>Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airbnb</td>
<td>☐ High-end</td>
<td>✅ Low-end</td>
</tr>
<tr>
<td></td>
<td>✅ Current</td>
<td>☐ New</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sustaining innovation</th>
<th>Customer</th>
<th>Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uber</td>
<td>✅ High-end</td>
<td>☐ Low-end</td>
</tr>
<tr>
<td></td>
<td>✅ Current</td>
<td>☐ New</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disruptive innovation</th>
<th>Customer</th>
<th>Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netflix</td>
<td>☐ High-end</td>
<td>✅ Low-end</td>
</tr>
<tr>
<td></td>
<td>✅ Current</td>
<td>✅ New</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sustaining innovation</th>
<th>Customer</th>
<th>Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla</td>
<td>✅ High-end</td>
<td>☐ Low-end</td>
</tr>
<tr>
<td></td>
<td>✅ Current</td>
<td>☐ New</td>
</tr>
</tbody>
</table>
The Conclusion

1. Sustaining
2. Disruptive innovation

Low-end Disruptive
1. Sustaining
2. Low-end Disruptive
3. New-market Disruptive innovation

Market-Creating innovation

What's The NEXT?

1996

Discussion